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Abstract. Some of the basic developments in the variational treatment of electromagnetic 
field problems in anisotropic inhomogeneous media are reviewed. The field is assumed to 
be time harmonic and satisfies appropriate Maxwell’s equations. A vector variational 
principle in terms of electric and magnetic field vectors for lossy media is developed. The 
natural interface and boundary conditions associated with the principle are investigated 
and further modifications needed to implement more required conditions are presented. 
The results extend the class of problems for which the variational approach is useful in 
addition to facilitating the computations involved. 

1. Introduction 

Exact solutions of the problems of physics may be obtained for only a limited class of 
problems. For most cases, it is often necessary to solve partial differential or integral 
equations subject to complicated boundary conditions. By their nature, these equa- 
tions seldom admit simple rigorous solution and we are led more and more to the use 
of approximate methods. Indeed, even for the problems which can be solved exactly, 
it may be more convenient to employ approximate methods, since the evaluation of 
the exact solution may be much too complicated. Among many approximate methods 
which can be used, variational methods occupy a prominent place (Mikhlin 1964, 
Kantorovic and Krylov 1958). 

Many problems in physics can be characterised by variational principles (Morse 
and Feshbach 1953, chap 3, and Landau and Lifshitz 1971, chap 2). These problems 
are related to the minimisation of a variational integral, which often represents an 
energy of the system. The variational principle may succinctly summarise the equa- 
tions, and allows insight into the effect of different parameters involved besides 
providing a useful means for approximating the solution. 

The vector variational formulation of Maxwell’s equations provides a useful 
method for solving a wide class of problems which would be intractable if a classical 
differential equation approach was used and which could not be formulated in terms 
of scalar variational principles. Berk (1956) presented variational expressions for the 
resonance frequency of a cavity and the propagation constant in a guiding structure. 
He  considered inhomogeneous anisotropic media whose permittivity and permeability 
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tensors are Hermitian. He pointed out that the reaction concept (Rumsey 1954), 
which yields variational expressions, would be appropriate for lossy media provided 
the media tensors are symmetric. Berk’s results for the Hermitian media were 
re-derived by Cairo and Kahan (1965) using appropriate adjoint operators and inner 
products. English (1971) used Berk’s formulation in terms of both electric and 
magnetic fields to study propagation through inhomogeneously loaded cylindrical 
waveguides. English and Young (1971) used the electric field formulation in a similar 
study and presented a discussion on the advantages and disadvantages of using one 
field vector rather than both electric and magnetic vectors. Konrad (1976) presented 
a review on the subject and obtained results corresponding to those of Berk for the 
electric, the magnetic as well as the magnetic potential vectors. He also discussed the 
problem of uniqueness of the solution. Morishita and Kumagai (1977) have recently 
re-derived Berk’s result using the principle of least action. Alternative expressions for 
the propagation constant in a loss-free inhomogeneous waveguide with wall 
impedance were derived by Kurokawa (1962). These expressions were later used by 
Matsuhara and Kumagai (1974) and by Ohtaka et a1 (1976). The disadvantage of 
these expressions is that they include second derivatives rather than first derivatives of 
trial fields. 

Most of the above developments are restricted to loss-free media. The natural 
boundary conditions resulting from the formulations, and means to implement some 
required-but not natural-conditions, still need further study. 

This paper presents variational formulation for the field in a lossy anisotropic 
inhomogeneous medium and in the presence of sources. An adjoint operator is 
introduced which may be used for general lossy media and which reduces to the more 
convenient complex conjugate operator for Hermitian case. The boundary and inter- 
face conditions are investigated. Possible modifications to include some of these 
conditions in the formulation are presented. For the field in cylindrical guiding 
structures, a variational principle for the propagation constant is derived directly from 
the three-dimensional treatment of the fields. 

2. Field equations and the variational expression 

The linear medium under consideration has permittivity E and permeability C; which 
are tensor functions of position. The medium occupies a volume V which is bounded 
by a surface S possibly extending to infinity. The electromagnetic field within the 
medium for harmonic time variation satisfies Maxwell’s equations 

V A E = -iwB, 

V A H = i w D  + J, 

V . B = O  

V . D = p  

and the constitutive relations 

D = g . E ,  B = C ; . H  

where w is the angular frequency, J is the current source density assumed to exist 
away from boundaries or interfaces, E and H denote the electric and magnetic field 
vectors, D and B the electric displacement and the magnetic induction, respectively. 

In order to consider general lossy media, we introduce an adjoint operator which is 
the transpose operator, in which E‘ and C; are replaced by their transposes, and the 
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time dependence by its complex conjugate. Let the solution of the adjoint problem 
under conditions similar to the original problem be (E", H a )  with current sources 
equal to (+) or ( - )  the complex conjugates of the original sources. With this choice, 
the solution of the adjoint problem when media tensors are Hermitian reduces to (+) 
or ( - )  the complex conjugate of the original problem. 

We define a volume inner product and surface product by 

(A, B ) =  I/ / A .  B " d V  
V 

and 

( A , B ) S = J / A . ( A A B " ) d S  
s 

where n  ̂ is the outward unit vector to S .  A variational expression may then be written 
in the form 

F = ( V A  E, H ) + ( V  A H ,  E)+iw( (B ,  H ) - ( D ,  E ) ) - ( J ,  E ) - ( E , J ) .  (6 1 
Upon taking the first variation of F with respect to (E, H )  and (E", H a )  and applying 
Green's identity 

I/ / A  . O r \  B d V =  / I/ B .V A A d V -  J J  B .(n* A A )  dS (7 1 
V V S 

we get 

6F = (V A E +iwB, SH)+(V A H - i w D  - J, SE)+(SH, V A E +ioB) 

+(SE,V A H - ~ ~ D - J ) - [ ( S E ,  H)]s , - [ (SH,  Ells, (8) 

where [ K ] s ,  represents the variation of K across Si. These quantities result from the 
surface integration along both sides of any surface of discontinuity Si. The first 
variation of F vanishes if Maxwell's equations are satisfied in addition to the natural 
conditions that at any surface of discontinuity 

[n*r,H]=O (9) 

[n* A E ]  = 0. (10) 

and 

This implies that both tangential electric and magnetic fields are continuous. 
If the boundary is a perfect conductor, (10) implies that the required condition is 

natural but (9) would yield an unphysical boundary condition. To remedy this situa- 
tion, as suggested by Berk's work, we may add the surface product (E, H ) s  to 
equation (6) .  

The concept of perfect magnetic conductors is very useful when surfaces of 
symmetry are encountered. On such conductors the tangential magnetic field must 
vanish. If the boundary condition is of a mixed type, i.e. implying a perfect electric 
conductor on a part SI of S and a perfect magnetic conductor on the remainder SI,, 
one may add (E, H)s ,+  (H,  E)s,, to (6 )  to yield the required condition. Thus we have 

F = (V A E, H )  + (V A H, E )  + iw ( (B,  H )  - (D,  E))(J, E )  - (E,  J )  + (E, H)s ,  + (H,  E)s,, 
(1 1) 
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with (9) and (10) as the associated natural boundary conditions at surfaces of dis- 
continuities and 

~ A E = O  on SI (12) 

and 

~ * A H = O  on SI*. 

3. Variational expression for the angular frequency 

Having established that (6) is the proper variational expression for the fields, the 
appropriate stationary expression for the angular frequency w may be easily obtained. 
Taking the first variation of (6) with field vectors as well as w as variational 
parameters, we get 

SF = RHS(8)+ iSw ( (B,  H )  - (D,  E ) )  (14) 

where RHS(8) is the right-hand side of equation (8). From (14) it follows that upon 
taking F = 0, (6) represents a variational principle for w with (9) and (10) as natural 
boundary conditions and we may write 

(V A E, H)+(V AH, E ) -  {J,  E ) - @ ,  J )  
(D,  E )  - (B,  H )  

iw = 

Depending on the required boundary condition, a proper integral may be added to the 
numerator of (15) in order to satisfy such a condition as previously demonstrated in 
the second part of the paper. For the source-free case, (15) agrees with Harrington’s 
expression (Harrington 1968) and reduces in the loss-less case to Berk’s result (Berk 
1956). 

4. Variational expression for the propagation constant 

Let the electromagnetic fields under consideration exist in a guiding structure of cross 
sectional area S and contour C. The permeability and permittivity tensors are 
assumed to be functions of the transverse direction (t) only. The dependence on the 
longitudinal direction z may be taken as exp(-ivz), where v is the propagation 
constant. The adjoint field is assumed to vary as exp(ivz) which is equivalent to 
introducing a special adjoint V operator as used by Cairo and Kahan (1965). Instead 
of developing a variational principle for v from the start, a direct derivation is 
presented depending on the analysis of previous sections. 

We utilise the vector identity (van Blade1 1964) 

B.V,AA dS-  B .  (6 A A )  dl 

where A and B are three-dimensional vectors, 6 is a unit outward vector normal to C 
and V, represents the Laplacian operator in the transverse direction. With 

A = A(t) exp(-ivz) and B = B(t) exp(ivz) 

11 A . V t A  B dS = (16) 
s 11 s I, 
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and using V = (a /az) i  + V ,  where i is a unit vector along z, it follows that 

11 A ,  V A B dS = J J  B .V A A dS  - 
S S 

which is identical to the three-dimensional identity (7) with surface integrals replacing 
volume integrals and line integrals taking the place of the surface integrals. As a 
consequence, results corresponding to those previously obtained in 8 2 follow directly. 
For example equation (1 1) is now replaced by 

F = (V A E, H ) + ( V  A H, E)+iw((B, H)-(D, E ) )  

- (J,  E )  - (E, 4 + (E, H)cl  + (H,  E)cIl (18) 

where the inner products are now defined by 

(A, B ) =  11 A .  B” dS  
S 

(A, B)c = 1 A .  (6 A B ” )  dS. (20) 
C 

The natural boundary conditions which follow from (18) are the continuity of both 
tangential electric and magnetic fields at interface boundaries and 

I?AE=O on CI 

h ~ H = 0  on CIr. 

As previously demonstrated in 0 3 ,  a variational expression for a parameter Y (or w )  
follows from (18) upon putting F = 0. 

5. Conclusions 

The paper presents variational principles for the electromagnetic fields, angular 
frequency and the propagation constant in a guiding structure. The media considered 
are linear lossy anisotropic and inhomogeneous. A proper adjoint operator and 
convenient inner products are introduced. The natural boundary conditions resulting 
from the formulation are discussed and means to satisfy additional required conditions 
are presented. In particular, mixed type boundary conditions are made natural. 
Inclusion of the required conditions as natural greatly extends the range of the 
applicability of the variational approach and permits the use of simpler expansion 
functions. This consequently may result in simpler integrals to be evaluated, It is 
shown that the continuity of tangential electric as well as magnetic fields at interfaces 
is guaranteed as a natural boundary condition. 
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